展会新闻
科学Tang丨微波辅助发泡熔结一体化制备综合性能优异的PS/PPO泡沫塑料
图1.PS/PPO的加工过程
微波烧结效果及机理
如图2a所示,随着微波辐射时间的延长,珠粒之间的熔结效果明显改善。与纯PS相比,由于PS/PPO-50%具有较高的加工温度,应延长微波时间,可以实现较好的界面粘结(图3d)。同时,伴随着微波的选择性加热,泡沫能够实现二次膨胀,这有助于制备出特定泡孔尺寸和膨胀比的泡沫。
图3b表示了泡沫珠粒的烧结机理。在加工过程中,尽管甘油被微波加热到相对较高的温度,但泡沫长时间处于高温环境中仍能确保整体不会发生塌陷。这是因为随着珠粒的膨胀,珠粒之间的甘油沿着珠粒的缝隙被挤出,以确保在烧结过程中,有较少甘油残留物留在界面处。因此,长时间加热不会显著影响泡沫的宏观和微观结构,这拓宽了微波熔结过程中的加工温度窗口。
图2.在1000 W的微波辐射功率下在不同时间制备的PS珠粒泡沫部件的宏观图像(a); IFS策略的机理图(b);在1000 W的微波辐射功率下烧结不同时间的PS(c)和PS/PPO-50%(d)的烧结界面和中心的SEM图像。
02
如图3a-3c所示,通过微波熔结制备的PS珠粒泡沫样品即使在60%的压缩应变下仍表现出很强的粘结性。从图3f-3g可以看出,具有不同密度的PS泡沫样品具有不同的泡孔结构,低密度泡沫样品具有较大的泡孔尺寸和较薄的泡孔壁,从而导致泡沫变形阻力显著降低。
如图3h-3i所示,为具有不同PPO含量的泡沫样品和经水蒸气烧结处理的EPS泡沫样品(所有样品的密度均为约0.14g/cm3)的压缩性能。PPO的加入显著提高了PS泡沫部件的机械性能,在50% PPO含量下达到最高压缩强度(8.16MPa),与纯PS泡沫(3.19MPa)相比增加了155%,与EPS泡沫(1.01MPa)相比增加了707%。
出色的机械强度进一步验证了微波辅助熔结工艺的可靠性和稳定性,使其能够快速制造具有稳定3D几何形状的高性能热塑性泡沫。
03
此外,碳层的形成有效地防止了泡沫的持续燃烧和滴落(图4c-4e)。由于隔热性能与EPS泡沫样品一致(图4f-4g),PPO增强泡沫成为EPS理想的替代品。